A
) |
P

L

A

THE ROYAL A

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

/,A\\\

71—\
yan

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PSS THE ROYAL

or—— SOCIETY

On the Interactions between Large-Scale Structure and
Fine-Grained Turbulence in a Free Shear Flow. lll. A
Numerical Solution

T. B. Gatski and J. T. C. Liu

Phil. Trans. R. Soc. Lond. A 1980 293, 473-509
doi: 10.1098/rsta.1980.0001

i i i Receive free email alerts when new articles cite this article - sign up in the box
Email alerti ng service at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1980 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;293/1403/473&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/293/1403/473.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

[ 473 ]

ON THE INTERACTIONS BETWEEN LARGE-SCALE
STRUCTURE AND FINE-GRAINED TURBULENCE IN
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2 (23] We present the results of a numerical computation of the interactions between the
= horizontally periodic monochromatic component of a large-scale coherent structure
=i and the fine-grained turbulence in a mixing layer. The dependent variable charac-
EO terizing the coherent structure is the fofal flow quantity which includes both the
W

Reynolds-averaged (here the horizontal average) mean flow and the large-scale
coherent structure, this being distinguished from the fine-grained turbulence by a
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conditional average linked to the periodicity of the coherent structure. The dependent
variables characterizing the fine-grained turbulence are the conditionally averaged
turbulent stresses, which are themselves fofal quantities comprising the Reynolds-
averaged mean stresses and the coherent-structure induced or modulated stresses. The
transport equations for such conditionally averaged quantities are identical in form
to the Reynolds-mean equations. Closure approximations for the Reynolds-mean
stresses due to Launder ¢t al. (1975) are directly extended to the conditionally averaged
stresses. These approximations include the pressure—velocity strain redistribution which
accounts for rapid distortions due to the large-scale coherent structure, a simple
diffusional approximation to the triple correlations and an approximate transport
equation for the rate of viscous dissipation. The large-scale structure is two dimensional
with its vorticity axis perpendicular to the mean flow direction, the fine-grained tur-
bulence being three dimensional. The initial conditions are made self-consistent by
numerically solving the horizontally homogeneous, time-dependent, Reynolds-mean
problem in the absence of coherent structure until the mean Reynolds stresses and
viscous dissipation become self-similar as the shear layer growth rate becomes constant.
The solution to the Rayleigh equation with this self-similar mean velocity profile is
then obtained. The wavenumber mode which corresponds to the most-amplified case
is then suddenly imposed, together with the Reynolds mean velocity, as the initial
condition for the large-scale structure. It is argued that, since the coherent structure-
induced stresses and viscous dissipation function develop in finite time, the initial
conditions for the conditionally averaged turbulence quantities are precisely those for
the initial self-similar R eynolds-mean quantities, consistent with the sudden imposition
of a large-scale structure upon the flow. The structural details are presented in terms
of the time evolution of the conditionally averaged streamfunction and vorticity
contours, While the streamline patterns resemble Kelvin’s cats’ eyes, the vorticity
patterns display large non-uniformities within the cats’ eyes; thus it is not possible to
construct an analytical nonlinear critical layer theory for this problem consistent with
the numerical results. The physical interpretation is presented, after Reynolds (hori-
zontal) averaging, in terms of the time evolution of global energy-exchange mech-
anisms between the Reynolds-averaged mean flow, the large-scale coherent structure
and the fine-grained turbulence. The mean flow loses energy to both components of
the oscillations, the large-scale structure gains energy from the mean flow and loses
energy to the fine-grained turbulence, and the fine-grained turbulence gains energy
from both the mean flow and the large-scale structure and loses kinetic energy through
viscous dissipation of the small eddies. The possibility that the large-scale structure
transfers energy back to the mean flow (like ‘damped’ disturbances in hydrodynamic
stability interpretations) is also shown. Owing to the nonlinear interaction between
the mean flow and large-scale structure, through the action of the large-scale Reynolds
stresses, the global energy of the large-scale structure first increases and then decays
with time. Such a growth and decay reflects the inability, at some time, of the large-
scale to effectively transfer energy from the mean flow and to subsequently transfer
energy back to the mean flow through the action of the large-scale Reynolds stresses.
The simultaneous evolution of the global fine-grained turbulent energy exhibits an
increase from its initial self-preservation level to a final, higher one, in response to the
new mean flow condition caused by the evolution of the large-scale structure. This
physical picture of the global energy evolution is consistent with previous much-
simplified analyses of the temporal problem (Liu & Merkine 19764) and approxi-
mately consistent with results for the spatial problem as well (Alper & Liu 1978). The
structural details of the direct production mechanisms of the conditionally averaged
horizontal and vertical contributions to the fine-grained turbulence energy from the
two dimensional, large-scale structure are shown in terms of contour plots for the
cats’ eyes regions; of these, the dominant production mechanisms essentially resemble
the contours of the horizontal and vertical contributions to the turbulence energy.
Since there is no direct production mechanism for the spanwise contribution to the
turbulence energy, this contribution must arise entirely from the pressure-velocity
strain redistribution mechanism obtained from the closure approximation. The
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structural details of this redistribution mechanism essentially resemble those of the span-
wise contribution to the turbulence energy. Certain apsects of available experimental
observations are interpreted in terms of the present considerations. Finally, the
importance of well-controlled experiments to further study the large-scale coherent
structures in free turbulent shear flows is re-emphasized.

1. INTRODUGTION

The interactions between a monochromatic component of the large-scale coherent structure
and fine-grained turbulence in developing mean flows with inflexional profiles have recently
been analyzed (Liu & Merkine 1976 a; Liu & Alper 1977; Liu ef al. 1977; Alper & Liu 1978).
There, ideas from nonlinear hydrodynamic stability theory (Stuart 1958; Liu 1971) are utilized
to obtain the ‘amplitude’ equations for the mean flow, the large-scale coherent structure and
the disparately fine-grained turbulence from their respective kinetic energy equations. The
nonlinear interactions between the three components of flow are depicted in terms of the non-
equilibrium adjustments between the mean shear layer growth rate and the integrated energy
densities of the large-scale structure and the fine-grained turbulence. It is interesting to note
that imposing an initially most-amplified mode of the large-scale structure on the flow gives a
spatial spreading rate for the equilibrium shear layer of about 0.14-0.17 from approximate
considerations (Alper & Liu 1978), while observations of Liepmann & Laufer (1947) give 0.16.
The most interesting events occur in the non-equilibrium adjustment region: here the large-scale
structure amplifies owing to energy production from the mean flow and subsequently decays
owing to energy transfer to the fine-grained turbulence. The fine-grained turbulence adjusts
from its initial level to a new higher kinetic energy level by extracting energy from the large-scale
structure, energy production from the mean and the rate of viscous dissipation play the usual
familiar role. A similar picture of the life cycle of a non-equilibrium adjustment event has in
fact been obtained in experimental observations, and there too the large-scale structure is
explicitly educed from the total fluctuations; it is thus possible to study the process of energy
cascading from a single mode of large-scale coherent structure to the rest of the disparately
fine-grained random turbulence (Binder & Favre-Marinet 1973; Favre-Marinet 1975).
Although some of the overall features of observations can be explained via the approximate
energy integral considerations described above, such methods cannot always provide the details
of the local structures involved. This is not unlike the situation in laminar flows, where the
extension of Stuart’s (1958) ideas to the approximate description of the interactions between
developing mean flows and nonlinear instabilities has achieved some measure of success in
comparison with experiments (Ko et al. 1970; Liu & Lees 1970; Liu & Gururaj 1974; Liu &
Merkine 1976 b). Complementing such nonlinear hydrodynamic stability analyses are numerical
solutions of the finite-amplitude instabilities with the full unsteady Navier—Stokes equations in
a laminar flow found in the works of Amsden & Harlow (1964) and Patnaik e al. (1976). There
the appropriate dependent variable is the total flow quantity rather than its two components,
the mean flow and the instability. The two components of the flow as well as their mutual inter-
actions can always be obtained from the numerical solution by appropriate averaging. The
prospects of applying such numerical methods to the dynamical equations in order to obtain
the large-scale coherent structure in turbulent shear flows are discussed in Liu & Alper (1977)
and Liu et al. (1977). The present paper presents the numerical results of such an approach
and analyses, in particular, the interaction of an initially monochromatic component of the
33-2
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large-scale coherent structure with the fine-grained turbulence in a temporal mixing layer of
horizontally homogeneous and oppositely directed streams. The large-scale coherent structure
is horizontally periodic and develops in time. The physical significance of this problem is that
it strongly resembles (though does not exactly correspond to) the spatially developing free shear
layer observed in laboratories. The coherence or periodicity enters into the horizontal boundary
conditions and the numerical problem is well defined. On the other hand, the numerical problem
for the spatially developing free shear layer is not well defined because of the necessary but
unknown boundary conditions downstream,

In the previous approximate analyses (Liu & Merkine 19764; Alper & Liu 1978) the flow
quantity was split into three components following Reynolds & Hussain (1972): a mean flow,
a large-scale coherent structure and a fine-grained turbulence component. There, two averaging
procedures are necessary to consider the interaction among the three components of flow: the
conditional average, in particular the phase average, which explicitly educes the coherent
structure from the total fluctuations containing both random and coherent components; and
the usual Reynolds average which sorts out the fluctuations from the mean. In the present
numerical scheme, the appropriate dependent variable is one which comprises both the mean
and the large-scale coherent structure. The dynamical equations obtained for such a total
‘coherent structure’ quantity are identical to the unsteady equations for the ‘mean’ quantities
in the Reynolds sense, except that the fine-grained turbulent stresses are now interpreted as being
conditionally averaged (not, as is usual, Reynolds-averaged). The conditionally averaged
stresses, like the dependent dynamical variables characterizing the coherent structure, consist of
a mean part, which is in fact the Reynolds or the mean stress, and a coherent-structure-induced
stress which has the same periodicity as the coherent structure. The dynamical equations for the
large-scale coherent structure is augmented by the conservation equations for the conditionally
averaged fine-grained turbulent stresses which must be closed. Closure is obtained here by a
direct extension of the Launder ef al. (1975) model to the problem of the conditionally-averaged
stresses. It is, of course, difficult to justify a direct extension of closure schemes for mean stresses
to conditionally averaged stresses. However, this direct extension is accepted here by way of
assumption about the conditionally averaged fine-grained turbulence quantities with which the
large-scale coherent structure interacts. It is most probably immaterial which of the available
higher-order closure schemes for the mean stresses is used for such an extension, since the central
problem is still the large-scale structure. Launder’s model is chosen, however, because it will
result in the fewest assumptions about the direction of energy transfer between the disparate
scales of motion. We have left this issue to careful but approximate calculations, rather than to
assumption, in the integral energy considerations (Liu & Merkine 19764; Liu & Alper 1977;
Alper & Liu 1978).

2. FORMULATION OF THE PROBLEM

In contrast to our previous approximate analyses (Liu & Merkine 1976 ¢; Liu & Alper 1977;
Alper & Liu 1978) in which the flow quantities were split into three components (Reynolds &
Hussain 1972), the mean flow, the large-scale structure and the fine-grained turbulence, the
present computational problem necessitates a splitting into only two components: a coherent part
(which includes both the mean flow and the large-scale structure) and the fine-grained tur-
bulence. Mean quantities are obtainable from the numerical results by horizontal averaging, as
are the interaction mechanisms in the mean. Thus neither prior horizontal averages nor mean
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quantities are explicitly involved in the computational scheme. Only the conditional average
(which is here the phase average), linked to the horizontal periodicity of the large-scale structure,
is involved in the extraction of our ‘ proper’ dynamical dependent variable from the fine-grained
turbulence.

(a) Conservation equations

In the following, the velocity components and coordinates are made dimensionless by the
free stream velocity and the initial shear layer thickness, respectively; the pressure is made
dimensionless by the free-stream dynamic pressure, and the time by the free stream velocity
and the initial shear layer thickness. We shall denote the conditional average by {()) and the
horizontal average, to be used after the numerical results have been obtained for diagnostic
purposes, by (). The dynamical dependent variables, velocity and pressure, are denoted by the
script symbols _

Ui(x;,8) = Uy(#;, 8) +85(x5,£),  P( xwt) = xvt) +p( t),
respectively; the mean flow is denoted by an overbar, the large-scale structure identified by a
tilde (~) and the fine-grained turbulence by a prime ('), and x; are the coordinates with x the
horizontal, z the vertical and y the spanwise directions. The full Navier-Stokes equations are
then split into a coherent part and a random fine-grained turbulence part by the substitution

U, = Ui+u1,2’ b= P+[)’;

this resembles Reynolds splitting, except that the average to be taken is now the conditional
average. The above formulation identifies a total mean flow, that is, the mean flow is now taken
to be the sum of the usual (Reynolds averaged) mean velocity and the large-scale disturbance
velocity. Thus the u; are random departures from the (total) mean flow and are necessarily
uncorrelated, on the average, from the organized motion (Hussain & Reynolds 1970). This is
entirely consistent with the original ideas of Reynolds (1895) in splitting the flow into slowly
varying mean and random fluctuating parts. For an incompressible fluid we have for the
dynamical variables U; and P

oU;

= (2.1)
U QUU; 2P _0Giuy_ 1 U, (2.9
ot 0x; Ox; Ox;  Re Ox;0x;

where Re is the Reynolds number. The coupled but unclosed equations for the conditionally
averaged stresses are

(r+ Uiz i = ol s 2o G (05

production redistribution

of,., ., ., 1 a(u Ou; Qu;
m[(uz “k)"‘(ﬁ (u’b Jk+u1 zlc)> axk ] 2R€ axk axk> (23)

diffusion dissipation

Thus, (2.1)—(2.3) are identical to the starting point for the Reynolds equations ns except that the
stresses {u;u;) are conditionally averaged ones, made up of u;uj+7#;;, where u} 4} are the mean
horizontally averaged stresses and 7;; are the large-scale structure-induced or modulated stresses.
In this computational scheme, of course, {uju;) appear as the dependent variables for the
stresses, and this necessitates a closure scheme for the conditionally averaged quantities in
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7 o~

equation (2.3). Again, note that u;u}, ;; and the interaction mechanisms in the mean, which
do not occur explicitly, are obtainable by horizontal averaging of the numerical results.

(b) Closure of conditionally averaged quantities

Some closure schemes for conditionally averaged quantities in the #;; equation have already
been discussed in the approximate energy integral analyses previously reported (Liu & Merkine
1976 a; Liu & Alper 1977; Alper & Liu 1978). That discussion was limited in that it touched upon
only those quantities that are present in the shape assumptions for the integral considerations,
namely the pressure-velocity correlation and viscous dissipation; notably absent are the tur-
bulent diffusion quantities since these contribute to no net energy transfer. The main point,
however, is that the shape functions #;, or more precisely 04,;/0x;, and 7;; are obtained from
approximated conservation equations. Though approximate, the energy cascade from the large-
scale structure to the fine-grained turbulence, #;;(0%;/0x; + il; /0x;), is obtained from conservation
principles. In a closure scheme for equations (2.1)-(2.3), which must necessarily be more
elaborate than that in the integral energy considerations (Liu & Merkine 1976 2; Liu & Alper
1977; Alper & Liu 1978), the simple but important idea of allowing the energy cascade process
to follow from conservation principles should be preserved. To this end, the Launder et al.
(1975) closure scheme is here directly extended to the conditionally averaged quantities on the
right side of equation (2.3). '

The philosophical ideas and pragmatic purposes of applying closure procedures to the mean
quantities which have appeared in the literature on turbulence (see, for instance, Bradshaw
1972) are somewhat different from ours in that previous work has aimed at obtaining accurate
computational results which can predict those mean quantities for which measurements are
available. In such computational results and experiments the entire spectrum of fluctuations,
including any possible large-scale coherent structures, is considered as ‘ turbulence.” Attempts at
using the same set of ‘universal’ constants in predicting mean quantities in a variety of flow
situations are not necessarily successful; on the other hand, different ‘universal’ constants might
be more suitable for different flow configurations. It may well be that the fact that such constants
are not necessarily universal is entirely attributable to the different instability mechanisms which
give rise to the coherent structures. For instance, the mechanisms which sustain turbulent Taylor
vorticities (Pai 1939, 1943; MacPhail 1941) and which account for the development and decay
of the coherent structure observed by Brown & Roshko (1974) in an inflexional mean shear
flow are quite different if one makes use of the wealth of physical ideas from hydrodynamic
stability (Lin 1955; Stuart 1963, 1965). The fine-grained turbulence might be ‘universal’ but
the disparately large-scale coherent structures are not. The present work, like the preceding
works (Liu & Merkine 1976 a; Liu & Alper 1977; Alper & Liu 1978) which consider the large-
scale structure explicitly, is directed towards obtaining a physical understanding of the interaction
mechanisms between the disparate scales of motion rather than striving for numerical accuracy
in the absence of more quantitative observations of the corresponding processes. In this situation
it is difficult to assess the validity of the turbulence models used for the conditionally averaged
stresses. On the other hand, the types of averaging process to be used is a matter of appropriate-
ness for the particular physical problem of interest (see, for instance, Monin & Yaglom 1971).
The conditional averaging here does separate the randomly fluctuating flow quantity from the
‘slowly varying’ mean flow quantity and the conservation equations for the large-scale mass and
momentum and transport equations for the conditionally averaged stresses do indeed resemble
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those obtained by Reynolds (1895). Thus, the use of arguments for the closure of appropriately
averaged stresses of the random fluctuations, such as those of Launder et al. (1975), would be more
valid here than originally anticipated. This refers to the functional forms of the closure model
rather than the proportionality constants. That this may indeed be the case comes from the
results of the calculations. Throughout the temporal development of the flow, the Reynolds-
mean stresses, obtained from the computed conditionally averaged stresses via horizontal
averaging, were monitored. The spatial variation of the Reynolds-mean stresses were consistent
with the asymmetric distribution of the Reynolds-mean velocity profile. Finally, a closure
framework, such as a direct extension of that of Launder e al. (1975) to the respective con-
ditionally averaged quantities, will involve the simultaneous solution of the large-structure
dynamics and the conditionally-averaged stresses (2.1)—(2.3) and will provide the  proper’ local
energy transfer mechanisms between the various scales of motion. This is in contrast to those
closure procedures that make gradient-diffusion assumptions about the stresses themselves,
thereby regulating the direction of the energy transfer mechanisms at the outset.

We refer to Launder et al. (1975) for discussion of the closure arguments and for further
references to the literature. Here, we shall make the direct extension of closure assumptions from
the mean Reynolds stress transport equations to conditionally averaged stress transport equations.
The closed conditionally averaged stress equation can then be written as

[§t+ Uiz ](u' ) = - [(u; ué)%x—[f +<u; >6Uf] ég [C; w5y — §6:€k)

= VI3 Bad) + e [ 2 a<§§'l 2o (24

The first term on the right of equation (2.4) represents production. The second and third terms
on the right come from the pressure-velocity correlation assumption. The second term follows
directly from Rotta (1951) by using Chou’s (1945) Poisson equation argument; {¢) here is the
conditionally averaged (dimensionless) viscous dissipation rate, (k) = 3{u;?) is the condition-
ally averaged fine-grained turbulence kinetic energy and ¢, is taken to be a constant (¢; = 1.5).
The third term on the right, which gives rise to a tendency towards isotropizing the local tur-
bulence production, follows from a simplified version (model 2) of Launder et al. (1975) where
v is taken as constant (y = 0.6), and {(F,;) is the conditionally averaged fine-grained turbulence
kinetic energy production rate:

Py =~ i g~ i g

that is, the production of (k) from the local large-scale coherent structure rates of strain 0U; /dx;.
Hence, the effects of local rapid distortion due to the large-scale structure are appropriately
accounted for by the third term in (2.4). Among the diffusion terms in (2.3) only the triple
correlation terms are retained and their closure follows from direct extension of the simple
gradient diffusion hypothesis of Daly & Harlow (1970) to the corresponding conditionally
averaged quantity here and is represented by the fourth termin (2.4), where c; is taken as constant
(¢; = 0.25). The viscous decay terms in (2.3) are taken to be isotropic. That is, they are taken to
contribute to the rate of dissipation of the fine-grained turbulence kinetic energy but not to the
off-diagonal stresses. Hence, the last term of (2.4) is

Ou; Ouj
= 24..
Re o, ax, 8945 <e)- (2.5)
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The use of (2.5) here, which refers to the fine-grained turbulence which is most likely to be
isotropic, is more logically viable than for the Reynolds mean that includes the large-scale
coherent structure which could contribute to much of the anisotropy. The exact equation for
{€) is then modelled via Hanjali¢ & Launder (1972):

d 0 B B gt e (&) 6U &
(6 ) @ = i3 (@ i 5 ~eaqB sl —ap @ 20

The first term on the right depicts the diffusion of {¢), and the second and third give the effects
of stretching and viscous decay on {¢); ¢, ¢4, and ¢, are taken as constants (¢, = 0.15, ¢, = 1.44,
o = 1.9).

We have eleven equations for eleven unknowns, in general: four dynamical variables of the
large-scale structure Uj, P; six conditionally averaged fine-grained turbulence stresses {u;u;)
and the conditionally averaged viscous dissipation rate {e).

3. THE NUMERICAL CALCULATION PROCEDURE

We shall apply the framework discussed in detail above (see also Liu & Alper 1977) to consider
the horizontally periodic and temporally amplifying two-dimensional large-scale structure in
the mixing region of oppositely directed streams, a problem considered approximately by Liu
& Merkine (19764). The vorticity axis of the large-scale structure is in the spanwise, y-direction
and the velocities U, W are in the x- and z-directions, respectively. The spanwise velocity V is
zero, and so are all spanwise gradients of the conditionally averaged quantities. In this case the
equations and unknowns reduce to eight for U, W, P, {u'w"), {u'?), (w'%), {v'*) and {€), in the case
of the simple gradient diffusion model used. The fine-grained turbulence is, of course, three-
dimensional, but 0(uju;)/dy = 0, as already noted. It is advantageous to re-formulate the
problem in terms of the vorticity and stream function of the large-scale structure. Such a for-
mulation allows the elimination of the pressure as a dependent variable. Upon introducing the

stream function
o o

U=EZ—, W=—.6.;C_, (3.1)
the continuity equation (2.1) is automatically satisfied. The vorticity is then related to the
stream function by definition:

2 =-V¥Y, (3.2)
where V2 = 02/0x? + 02/022 is the Laplacian in the (, z) plane. Thus, with (3.1) and (3.2), the
continuity and momentum equations (2.1) and (2.2) are replaced by the vorticity equation in
terms of the stream function

Vth + S-Uz VZS-U:E - Ta: Vz!{[z = <u,w'>xw - <u'w,>zz + ((w'2> - <u,2>) x2 (3 3)

where the subscripts indicate the appropriate partial differentiation. Thus the number of
dynamical equations for the large-scale structure is reduced from three to one if ¥ and the
definition of 2 are used.
(a) Boundary conditions
The boundary conditions of the problem require that the large-scale structure quantities and
the conditionally averaged turbulent stresses and viscous dissipation rate vanish as |z| -> co, with
the stream function being a linear function of z so that ¥, U = 1 as |z| - 0. Computationally,
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the vertical field is taken to be sufficiently large that the above boundary conditions are approxi-
mately satisfied. In the horizontal x-direction the field chosen is one large-scale structure
wavelength (to be fixed by the initial condition) and the boundary conditions there require that
the large-scale structure quantities as well as the conditionally averaged turbulent correlations
be periodic.
(b) Initial conditions

Initially, at ¢ = £,, we envision that there exists a mean turbulent mixing layer consisting of
oppositely directed, horizontally homogeneous streams. Such a mean flow coexists with a set of
compatible mean turbulent stresses and dissipation rate. At ¢ = f, a large-scale structure is
imposed so that the initial condition for (3.3) in terms of ¥ becomes

Y(x,258) = P(z54) + (%, 23 by). (3.4)

The initial conditions for the stresses of (2.4) and for the dissipation rate of (2.6) become
QUi upy (%, 23 80) = wius(2; o) +755(%, 23 1), (3.5)
(ed(x, 23 8) = &(z;4) +€(x, 23 1), (3.6)

respectively. The mean flow is horizontally homogeneous so that all x-derivatives of ¥, u}«} and
€ vanish. The imposed coherent quantities ¢, #;; and € are to be hydrodynamically possible
disturbances that are consistent with the prevailing mean flow, rather than arbitrarily imposed
functions. They may be obtained, for instance, from a linearized theory which nevertheless
couples the calculation for ¥, #;; and é. Following arguments of Liu & Merkine (19764), it
would appear that the simple description of ¢ in terms of the Rayleigh equation suffices, with
7;; and € set equal to zero in the initial disturbance level. These initialization procedures will be
discussed in §§ 4 and 5.

The subsequent numerical method used in the computations will be a finite-difference tech-
nique. The explicit finite-difference scheme to be used is the simple forward time centre space
(f.t.c.s.) scheme. Although restrictive in time-step size, it requires a minimum of programming
development for the particular geometry at hand. Throughout the system of equations, the
formal accuracy of the discretization is O(A¢, Ax?, Az?). In addition, computational experiments
were performed to insure adequate resolution and accurate results (consistent with the formal
accuracy of the finite-difference scheme) in regions of high shear. Of course, without experimental
results only relative comparisons such as these can be performed to check the validity of the
computational results. The stream function of (3.3) (as well as the vorticity of (3.2) and the shear
stress of (2.4)) is defined at the corners of a computational cell and all other variables are
defined at the centre of each cell. The grid spacings are equal in the x and z directions with 21
grid points in the ¥ direction and a maximum of 35 grid points in the z direction. The vertical
range varied by a factor of about two to allow for the growth of the shear layer thickness. Before
the computation, however, the set of self-consistent initial conditions (3.4)—(3.6) must be
obtained. This is discussed in §§ 4 and 5 below.

34 Vol. 2903. A
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4, INITIALIZATION OF THE MEAN VELOCITY, REYNOLDS
STRESSES AND DISSIPATION RATE

It is important to discuss the more quantitative aspects of this ‘initialization’ process which
leads to a set of consistent initial data to start the integration of (3.3). The proper initialization
will enable us to study the subsequent nonlinear interaction processes as a result of the non-
equilibrium interactions between the large-scale structure and the fine-grained turbulence
without the complicating influence of the adjustment between the mean flow and the mis-
matched, incompatible mean turbulent stresses and dissipation rate. This is not to say that the
choice of initialization here is the correct choice for the modelling of a real turbulent flow;
indeed, the correct choice of initial conditions in the modelling of turbulent flows is probably
of central importance to accurately match modelled and experimental results. However, in such
a controlled experiment where the study of the interaction dynamics is the issue, the proper
initialization is the one chosen. To achieve a set of self-consistent mean flow quantities devoid
of large-scale structure, the mean equations are obtained from the previously discussed equations
for the total quantities by setting the contributions from the large-scale structure equal to zero.
The continuity equation (2.1) leads to U= U(z, ) for the mean velocity. From (2.4) it follows
that v”2 = w2 since they have no direct production mechanisms.} The boundary conditions for
U are that as z—+ o0, U->+1 and that the stresses and dissipation rate vanish. The starting
values for the time integration are a hyperbolic tangent profile for Uand a set of functions for the
stresses similar to those used by Liu & Merkine (1976 4) in their shape assumption. The choice of
these functions is guided by the results in the homogeneous shear problem (Lumley 1970) for
the ratios among the normal and shear stresses and the observational results of Wygnanski &
Fiedler (1970) for the vertical distributions. The starting value for the viscous dissipation rate
was taken to be &€ = 0.3k 9U/0z, which implies a balance of dissipation and production of kinetic
energy for most of the shear layer. On a point by point basis, the vertical distributions of these
starting values are not necessarily self-consistent. With these starting values, numerical integration
of the system of equations for the temporal development of the mean turbulent shear layer was
carried out by using the f.t.c.s. scheme discussed in § 3. Calculations proceeded until the mean
velocity and the stresses evolved to a consistent self-preserving form. Following Townsend (1976),
the instantaneous mean shear layer thickness was defined as the variance of the distribution of
velocity gradient,

3(t) = [ f 2000z dz / f 2 ﬁ/azdz]*, (4.1)

where the limits of integration expanded continuously with time so that the domain of integration
far from the centre line included the region where 3 U/dz = 0.

In this two dimensional mixing layer, self-preserving development is assumed when numeri-
cally dé/dtis very nearly constant. It must be noted that in the development of a real turbulent
flow such self-preserving development may only be achieved as some asymptotic condition which
may or may not be actually realized within the confines of the experimental apparatus. As we
have discussed, the starting values for the initialization computation for the mean velocity,
Reynolds stresses and viscous dissipation rate are analytically represented for convenience and
are in self-preservation form. However, these starting profiles, which are not necessarily self-

1 This is not true, however, for («’?) and (w’%) because of their production from the large-scale structure.
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consistent, are subsequently made self-consistant by the end of the initialization computation. The
self-consistent set of self-preservation profiles obtained are indeed the end result and primary
purpose of the initialization computations here. These differ quantitatively (but not qualitatively)
from the starting profiles and are not analytically representable in a simple manner.

Self-preservation, of course, does not necessarily imply that the flow is in equilibrium in that
the production balances the rate of viscous dissipation across the entire shear layer. It implies
here only that the profiles of the mean flow, stresses and viscous dissipation rate are self similar
in their development. In fact, there is a relatively small but residual imbalance between overall
fine-grained turbulence energy production over the viscous dissipation so that this provides the
initial turbulence energy increase in the subsequent large-scale interaction problem.

The self-preserving mean velocity profile obtained here will furnish ¥(z; ¢,), the first part of
the initial condition (3.4). The first part of the initial conditions for the stresses and dissipation
rate (3.5) and (3.6) is thus also obtained. We now go on to determine the initial large-scale
structure distribution which must be consistent with the prevailing mean shear flow just obtained.

Ulz)

—1k

Ficure 1. The self-preserving initial mean velocity profile.

5. INITIALIZATION OF THE LARGE-SCALE STRUGTURE

The initial large-scale disturbance will now be determined by using the self-preserving form
of the mean velocity profile (figure 1) just obtained, where &(¢) ~ 3.6. (Note, the vertical co-
ordinate z in figure 1 is now rescaled by & = 3.6, but, for notational convenience, the coordinate
designations x, z will be retained although, as will be noted, further rescaling may be necessary.)
As pointed out earlier, /(x, z; #,) can be determined from a linearized theory which couples
¥, 7;; and € according to the framework discussed in § 2. However, the instability which arises
is most likely to be a dynamical one associated with the inflexional mean profile. In this case, Liu
& Merkine (1976 a) gave arguments that it is sufficient to determine 3 from inviscid’ considera-
tions, that is, from the Rayleigh equation as a first approximation. Thus we represent i by

U(x,z;t,) = A(ty) ¢(z; &) exp (iax) +c.c., (5.1)
where the eigenfunction ¢(z; ) satisfies the Rayleigh equation
(TU—c) (¢" —a2¢) — U = 0. (5.2)

Here the primes indicate differentiation with respect to the normalized z, « is the real wave

number normalized by &, and ¢ is the complex phase velocity (which is merely i¢;, the imaginary

phase velocity, since the real phase velocity ¢, is zero in the present problem). The outer boundary
34-2
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condition for ¢ is just ¢’ + ¢ — 0; that is, ¢ and ¢’ decay exponentially far from the centre of the
shear layer. The numerical solution procedures for (5.2) are well known (see, for instance,
Michalke 1964) for any given mean velocity profile U(z;,). The results of the eigenvalue cal-
culation for the self-preserving mean velocity profile (see figure 1) obtained in §4 are given in
figure 2, which shows the eigenvalue ¢; and amplification rate ac; as functions of the wave number
a. The most amplified disturbance occurs at about & & 0.275 with ¢; &~ 0.4716 and a¢; ~ 0.1297.
The most amplified disturbance will be used in (5.1) and in (3.4) as the initial condition. Our
mean velocity profile differs from the tanh z profile and therefore the resulting eigenvalues are
correspondingly different from those for that profile.

oc;| €
0.2¢10

06
o
Ficure 2. Hydrodynamic stability characteristics of the large-scale structure consistent with initial mean velocity
profile. The most amplified mode is used as initial condition, ——, ac; (growth rate); ———, g (complex phase
speed).

Since the eigenfunction is linear, it is determined up to an arbitrary constant denoted by
A(%,) in (5.1). In order to render this arbitrary constant unique and physically meaningful, the
eigenfunctions themselves are normalized so that

[ u#1+arigraz -1

This then fixes the physical meaning of | 4|2 as the energy density, the total large-scale structure
kinetic energy per unit 8, contained in an area bounded by the shear layer thickness in the
vertical and by one wavelength 2n/« in the horizontal (see, for instance, Liu & Merkine 1976 a).
Thus in specifying A4(¢,) in the initial condition (3.4), one specifies the initial energy level of the
imposed large-scale disturbance.

Following the arguments of Liu & Merkine (19764), one can then calculate 7;;(x, z; ,) and
&(x, z; t,) from the linear theory using the eigenfunction ¢(x, z; #,) just obtained, and these then
furnish the remaining initial conditions in (3.5) and (3.6). For simplicity we set 7;;(x, z; ) = 0
and &(x, z;£,) = 0. However, it can be argued that since the large-scale structure is considered
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to be suddenly imposed and the modulation of the turbulence by this structure would take a
finite time to accomplish, both the modulated stresses 7;;(«, z; f,) and dissipation rate €(x, z; t,)
would remain in their frozen state of zero as far as the initial condition is concerned.

6. NUMERICAL RESULTS

The physical quantities that characterize both the large-scale structure and the fine-grained
turbulence are their respective kinetic energy integrals,

E= 0|4 = %f‘” @) dz, (6.1)

— 00

Ei=0E= f Y W e dz, (6.2)
— 0

(the notation used is that in Liu & Merkine 1976 a). The physical lengths here are normalized
by the initial shear layer thickness, where 4 is the local shear layer thickness. Hence |42, Eare
the corresponding energy densities (though these are not explictly used here) while E, E; are
respectively the large-scale structure and turbulence kinetic energy contained in a ‘box’ of unit
width bounded horizontally by one wavelength of the large-scale structure and vertically by the
extent of the shear layer. The numerical integration started with an initial fine-grained tur-
bulence field given by the initialization process described in § 4. That yielded an initial turbulence
energy level of Ey; = E; = 1.20 x 10~2. The initial large-scale structure energy level was taken
as Ej, = |A|3 = 10~4, which corresponds to initial root-mean-square velocity disturbance of a
small percentage of the free stream velocity. The initial mode shape was taken to be that of the
most-amplified mode, as discussed in § 5. In the subsequent parts of this section we will discuss
the mechanisms for the evolution of Ej and E;. First, however, it is appropriate to discuss the
direct results of the numerical calculations in terms of the conditionally averaged streamline
and vorticity patterns.

(@) Development of conditionally averaged stream function and vorticity

The stream function ¥(x, z; t), which consists of the sum of the mean flow P(z;t) and the
large-scale structure ¥(x, z; ¢), is shown in figures 3 (a)—(g) for the times indicated. In the final
results presented, all the coordinates are normalized by the wavelength of the initial disturbance,
and the timescale should now be understood to be scaled by the wavelength of the initial disturb-
ance and the free stream velocity. The vertical extent of the structure, as indicated by the con-
ditionally averaged streamlines, spreads rapidly and reaches a plateau at about ¢ ~ 1.5-2, after
which it begins to subside. The stream function contours are the cats’-eye patterns familiar in the
corresponding physical problem in laminar flow. No qualitative deviations from the cats’-eye
pattern occurred during the development of the flow. One can say, in general, that as far as free
shear flows are concerned, the nonlinear instability patterns found in laminar inflexional flows
are also possible in turbulent shear flows. However, the nonlinear mechanisms of development
are quite different from those in the much simpler corresponding laminar flows.

The conditionally averaged vorticity contours are shown in figures 4 (a)-(k). Again, the
vorticity £2(x,z;t) consists of the sum of the mean vorticity 2(z;¢) and the large-scale
structure vorticity @(x, z; ¢). The initial large-scale structure corresponding to the most-amplified
mode has a double concentration of vorticity (figure 4 (z)) (see figure 1 of Michalke (1963)), but
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Ficure 3¢ AND d. For description see p. 489.
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¥=1.350
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1165

1.157 1151 1145
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V |
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s 1193

1.234
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x=0 1

Ficure 3. Time development of conditionally averaged stream function contours. (a) ¢ = 0,
b) t=0.5, (c) t= 1.0, (d) t = 1.5, () t = 2.0, (f) t = 3.0, (g) ¢t = 4.0.

this very quickly agglomerates into a single concentration and remains single through about
t = 1.0. At about ¢ & 1.5 a three-cell vorticity structure emerges and appears to remain in the
subsequent development. However, the local intensity of the conditionally averaged vorticity
appears to be progressively weakened under the action of the conditionally averaged turbulent
stresses. In addition, the change of symmetry occurring in this time frame is also due to the action
of the conditionally averaged stresses rather than due to any ‘roll over’ of the structure in the
central core region. As in the conditionally averaged streamline patterns of figures 3 (a)—(g),
the vertical extent of the corresponding vorticity pattern spreads rapidly until ¢ ~ 1.5-2.0, after
which its vertical extent also collapses somewhat.

(b) Interactions between disparate scales of motion in the mean

In order to understand physically the overall interaction processes in the problem, horizontal
averages of the numerical results are taken so as to enable us to diagnose the temporal interactions,
in the (horizontal) mean, between the mean motion, large-scale coherent structure and fine-
grained turbulence.

The kinetic energy equations for the three components of motion can be written as (see also
Liu & Merkine 19764):

dEn/dt = — 1, - I, (6.3)
dE/dt = I, — Iy, (6.4)
dEt/dt = II; + I -—g'. (6.5)

The mean flow kinetic energy defect is
[} — — © —
Ea =f (T2 T2,) dz+f (02— 02) dz, (6.6)
—00 0
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where U,., = + 1 are the dimensionless upper and lower streams external to the shear layer, and
Eyand Eyare as defined in (6.1) and (6.2), respectively. The large-scale structure and fine-grained
turbulence production integrals are

I, = f : % %[-]dz, (6.7)
o _[* =30
I “L,, Tz, (6.8)
0.04 —
0024
0 Lt
—0.02

Figure 5. The time development of large-scale structure energy transfer mechanisms.

© U 1d [®—n ® o 0a 0w 0w
R B O om . fom oa\ 0w,
(@), f By dn W5y f @+ dz; (o) f_w[rmaxm(a; ax)+ﬁzaz]dz

—w —

The integral characterizing the energy transfer between the large-scale structure and the fine-
grained turbulence is

°° . o  [(o@ oW\ _ o
Ilt =f»w— I:rxwa"'rxz (&""a—;) +rzz§£} dz. (6'9)

The integral of the viscous dissipation rate of the fine-grained turbulence is
g?:fw édz. (6.10)

The physical interpretation of (6.3)—(6.5) has been discussed thoroughly in Liu & Merkine
(1976 @), who used the shape assumptions to reduce these equations to a set of equations for the
energy densities of the three components of motion. The behaviour of (6.3)—(6.5) is here obtained
directly from the numerical results for diagnostic purposes.
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Figure 5 shows the three terms in (6.4). The large-scale structure production integral is first
positive, indicating that energy is produced from the mean flow; after ¢ ~ 1.8it becomes negative,
indicating that energy is fed back into the mean flow. In ‘turbulence’ language this latter be-
haviour is usually referred to as a negative (eddy) viscosity phenomenon (Starr 1968). It is,
however, a phenomenon which is familiar in hydrodynamic instability and coherent structures
in laminar flows both theoretically (see, for instance, Ko ¢t al. 1970; Patnaik et al. 1976) and

200}

E/Ey,

1001~

Ficure 6. The time development of large-scale structure global kinetic energy.

experimentally (see, for instance, Durgin & Karlsson 1971). It was speculated in Liu (1971) that
such inverse coherent structure production also occurs in free turbulent shear flows. Itis essentially
an ‘inviscid’ or ‘dynamical’ phenomenon in the hydrodynamic stability sense and can be
imagined to occur even when linear stability characteristics are applied to developing shear
flow by taking the hydrodynamic stability characteristics as scaled locally by the shear layer
thickness. Take, for instance, the stability characteristics of figure 2. For a fixed physical wave-
number, « is scaled by the local shear layer thickness in this interpretation. As the shear layer
develops, a thus increases towards the right of the diagram with increasing time; eventually the
amplification rate curve a¢; would become negative and thereby produce damped disturbances,
in which case energy is transferred back to the mean flow. The nonlinear numerical results here
and in Patnaik ef al. (1976) essentially bear the proper resemblance to the approximate inter-
pretations using the kinematics of the linear theory locally. However, the dynamics of the
evolution is history-dependent, and linear theory alone cannot give it.

The development of the energy transfer integral from the large-scale structure to fine-grained
turbulence is also shown in figure 5. The contributions to this integral give a net energy transfer
from the large-scale structure to the fine-grained turbulence, with a peak in the integral occurring
during its time development. This, again, is qualitatively in agreement with the approximate
calculations described in Liu & Merkine (19764), including the peak of the corresponding
quantity (|4|2EI,) with time in Liu & Merkine (1976 a).

The difference of the two interaction integrals individually shown in figure 5, I — I1;, then
gives the time rate of change of the kinetic energy content of the large-scale structure, dZ;/d¢,
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shown also in figure 5. The curve crosses the axis at about ¢ ~ 1.50 and thus E; peaks at that
time. The negative region of dE;/d¢ is approximately equal to the positive region and thus
produces in £} a decay to very small values as time increases past ¢ &~ 5. Note also that the
production integral 7, changes signs; thus becoming at some time a source of energy to the mean
flow. The behaviour of I}, implies that at some time the wave becomes unable to extract energy
from the mean flow due to the distortion of the mean flow, asin nonlinear hydrodynamic stability
theory (Stuart 1956), through the action of the Reynolds stress & #. Subsequent nonlinear inter-
actions causes the stresses @ to diminish and eventually change sign. Figure 6 shows the resulting
E, plotted relative to Ejy, with a maximum relative amplification of 250 for the case calculated.

0.15p

0.10

0.05

-0.05

~ U
~__ o —_—
—0.10%- -
Ficure 7. The time development of fine-grained turbulence energy transfer mechanisms.
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The four terms of (6.5) are shown in figure 7. In the computed initial self-preserving shear flow
the fine-grained turbulence production integral I is slightly larger than the viscous dissipation
integral ¢” and this accounts for the initial small rate of growth of the turbulent kinetic energy
integral E;. However, the large-scale structure, which subsequently develops, produces such a
modification of the Reynolds-mean flow, and through distortion of the velocity profile and
spreading, than an implicit enhancement of the fine-grained turbulence production takes place.
After a period of initial readjustment, 7, and ¢ nearly balance each other at later times, so that
the rate of change of the turbulence energy content d£;/d¢ eventually becomes small again and
E;, shown in figure 8, develops slowly in a manner resembling its initial development. The
interaction between the large-scale structure and turbulence takes place earlier. Because of the
relatively small initial large-scale structure energy level, E) /E;; & 1072, the large-scale structure
does not contribute significantly to the direct development of turbulence energy. In this case,
that development is attributed primarily to the imbalance between production from the mean
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and viscous dissipation, although the time integral of the bump Ii; does make a finite contri-
bution to the quasi-equilibrium level achieved by E; in figure 8. The qualitative behaviour of
E, and E;, including the contributing physical mechanisms, is entirely similar to that derived
from the earlier approximate considerations (Liu & Merkine 1976 ¢; Liu & Alper 1977; Alper &
Liu 1978).

The time rate of decrease of the mean energy defect Ep, is governed by — (I, +1;), where I,
and I; are shown in figures 5 and 7, respectively. The total energy of the entire system Em + E1 + E,
formed by the sum of (6.3)—(6.5), decreases in time according to the viscous dissipation rate of the
smaller eddies ¢’. ‘

Ficurke 8. The time development of fine-grained turbulence global kinetic energy.

Of interest are the detailed spatial contributions to Ii;, defined in (6.9). The various terms in
the integrand of I; are shown in figure 9 for the instant ¢ = 1.50 when E; reaches its maximum.
The lower half of the vertical axis implies transfer of energy from the fine-grained turbulence
to the large-scale structure on the (horizontal) average, while the opposite is true in the upper
half of the vertical axis; for instance, both —#,,0i/0z and —7,,0i/0x contribute to transfer of
energy from the fine-grained turbulence to the large-scale structure in certain regions across the
shear layer. However, these contributions are offset by the energy transfer from the large-scale
structure to the finer scales contributed by the other shear and normal stress mechanisms,
predominantly —#,,0%/0x and —7,,0@/0z. The contributions from the various transfer mech-
anisms bring about a net energy transfer from the large to the finer scales of motion, as indicated
by the dashed line in figure 9. The same conclusion was reached in the approximate analysis
of Liu & Merkine (19764). Their distribution for —7;;04,;/0x; was obtained from approximate
calculations using the linear theory and their particular numerical illustration was for the
most-amplified mode, and was thus somewhat similar to the initial condition situation in the
present calculations. Figure 9 here is for ¢ = 1.50 when considerable nonlinear interactions
have taken place, including shifts in phase (as an examination of the vorticity contours in
figure 4 here shows); it is therefore not expected that the details of the individual distributions of
—7,;0ii;/dx; given here should bear any detailed resemblance to those given in Liu & Merkine
(1976 a). However, that —7;;0i;/0x; does indeed contribute to a transfer of energy from the
fine to the large-scale in certain regions of the shear layer is in agreement with the approximate
considerations there. The net effect, that energy is transferred from the large to the fine scales,
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is of course in general agreement, as pointed out earlier. The determination of the mechanisms
and directions of this energy transfer in previous work (Liu & Merkine 1976a; Alper & Liu
1978) and in the present work according to the conservation laws is, we believe, a significant
contribution to the understanding of the interaction between large-scale coherent structures and
fine-grained random turbulence.

2.0

1.0

kinetic energy

transfer from

large to small
scale

0

kinetic energy
transfer from
small to large |~
scale

1.0

|-

Ficure 9. The vertical distributions of energy transfer mechanisms between the
large-scale structure and fine-grained turbulence at ¢ = 1.50.

The numerical integrations were carried out over the time scale of a single amplification—
decay process (figure 5). We did not carry out further integrations beyond this to see whether
repeated ‘bursts’ (Liu & Merkine 19764) occurred. However, in their approximate analyses
Liu & Merkine (1976 a) found such repeated bursts only for initially nearly neutral disturbances,
not for the initially most-amplified mode (the mode we deal with here).

The mean shear layer thickness d, (normalized by the initial thickness), defined by (4.1), is
shown in figure 10. It reaches one of constant slope when E} essentially saturates. Also shown in
figure 101s an estimated overall dissipation length scale of the fine-grained turbulence L, ~ Ef/ ¢’
normalized by its initial value L., = (3E,,)¥/d¢ ~ 1.355. Since L, is referred to 0, and the total
width of the shear layer is about 38, the initial dissipation length scale of the self-preserving shear
flow is about 0.45 the total shear layer width. After the start of the large-scale structure and
fine-grained turbulence interaction, there is a rapid production of the finer scales indicated by
the dip in L,/L,, in figure 10. This is accompanied by a rapid rise of the vertical extent of the
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large-scale structure closed-streamline H, normalized by its initial value H,. As H/H, eventually
declines, L,/ L, rises indicating that the fine-grained turbulence scales eventually become larger.
However, the ratio L/, shown also in figure 10, eventually remains very nearly constant. A
close examination of the ‘graininess’ of the turbulence in Brown & Roshko’s (1974) observations
indeed shows such a feature, that the downstream spread of the shear layer is accompanied by a
coarsing of the graininess.

121

0 2 4 ¢t

Ficure 10. The development of shear layer thickness and fine-grained
turbulence dissipation length scale.

(¢) The structure of conditionally averaged turbulent stresses and their
production mechanisms

In § 6 () we performed horizontal averaging upon certain of the numerical results in order to
bring out the interactions in the mean between the large-scale structure, the fine-grained
turbulence and the mean flow. Now in the formulation for the numerical calculation the large-
scale coherent motion is represented by the quantity U; which includes both the mean U, and the
large-scale oscillations #; with zero mean. The conditional average of the total flow quantity
u; = U, +u}, with u; the fine-grained turbulence, produces just U;. We recall that the turbulent
stresses are subject to such an averaging procedure as well. Thus the conditionally averaged tur-

bulent stresses {u; 4;), like U;, include both a mean ;{_uj part and a large-scale-modulated stress
7;; which also has zero mean. In this section we shall look at the spatial structure of the con-
ditionally averaged stresses {u;u;», which includes the components of the kinetic energy
(k) = ¥uju;y, and the mechanisms for their production from the conditionally averaged flow
U,. This point of view, which bypasses the introduction of an explicit Reynolds-type horizontally
averaged mean flow, arises directly from the numerical results and is one which is probably
favoured by experimentalists studying coherent structures in turbulence by using conditional
sampling techniques (Kovasznay et al. 1970). In this case, U; is regarded as the local ‘mean
flow’ and (u}u;) as the ‘turbulence.” The physical implications of this point of view and its
connection with the traditional Reynolds-type averaging have been thoroughly discussed
throughout in this paper.

The structure of ${u'?) is shown in figure 11 (a) at ¢ = 1.50 when E; has reached its maximal
value. It appears to be concentrated horizontally at the extremities of the wavelength and
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Ficure 11a AND b. For description see opposite.


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY :

PHILOSOPHICAL
TRANSACTIONS
OF

Y am

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STRUCTURE AND TURBULENCE. III 501
2.156x1073 )

B / (c) t=15

2"0'6079‘ ./ —4.238x1074

1.248x10°2

3.995%10°2

1.020x10”1

—0.6079 ' .

x=0. . . e B, . . 1

Ficure 11. The horizontal component of conditionally averaged turbulence kinetic energy and its production
mechanisms at £ = 1.50. (a) $(u'?). (b) Normal stress production rate, — (#’2)0U/0x. (¢) Shear stress production
rate, — (u'w’YoU/0z.

vertically at the centre of the shear layer. The production mechanisms for ¢u'2) via the work
done by the normal and shear stresses, —{u'?) and —{u'w"), against the velocity gradients of the
conditionally averaged flow, 0U/0x and 0U/0z, respectively are shown in figures 11 (4) and (¢).
The dominant production mechanism is that due to the shear stress, —{(u'w’), in combination
with the rate of shear strain 0U/0z. The contours of ${u’?) (figure 11a) are qualitatively similar
in shape to those of — (u'w’)oU/dx (figure 11¢). At the vertical outer edges and horizontally
in the centre of the shear layer there are concentrated local pockets in which energy is transferred
from the turbulence to the conditionally averaged flow. Although this transfer rate is relatively
small in magnitude, its tendency is to depress the constant ${u’2) contours at the outer regions
of the shear layer. In examining the contours of — (#'2)0U/0x in figure 11 (), we see that in the
upper left and lower right regions of the coherent structure energy is transferred from the tur-
bulence back to U, while the opposite is true for the upper right and lower left regions of the
structure. This would have a tendency to rotate the 3{(u’?) contours in an anticlockwise direction
in figure 11 (a). However, this is very nearly offset by the opposite, clockwise tendency of the
stronger production mechanism — {u'w'Y0U/0z shown in figure 11 (¢).

The contour of one half the conditionally averaged vertical stress 3¢w'2) is shown in figure
12(a), also at ¢ = 1.50. It is qualitatively similar in shape to 3{%'%) but has about half its value.
The energy transfer mechanisms from the conditionally averaged flow structure W are —(w’%)
OW/0zand — {u'w'Y0W /0x, shown in figures 12 (b) and 12 (¢), respectively. They are qualitatively
different but are of the same relative strength. The normal stress—strain mechanism, — (w'2)
O0W/0z, tends to depress the ${w'%) contours (figure 12a) in the right horizontal region
and elevate them in the left region, as is evident from figure 12 (4). The normal stress—strain
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F1eure 12. The vertical component of conditionally averaged turbulence kinetic energy and its production mech-
anisms at £ = 1.50. (a) 4{w’?). (b)) Normal stress production rate, — (w'2)0W/0z. (c) Shear stress production
rate, — {u'w’ YO W /0x.

mechanismgivesan approximately zero conversion atthe centre of the shearlayer, and thestructure
of $(w'#) there must be accounted for by the shear stress-strain conversion mechanism (figure
12¢), which is indeed what happens at the horizontal extremities of the structure. There is a
large closed cell at the centre, filling the vertical extent of the shear layer, which converts energy
back to the W flow. This would account for the depression of the 1{w’?) lines in that region.

The existence of $(u'?) and 4(w'%) is primarily attributed to their respective production mech-
anisms. Their detailed shapes, of course, must finally be accounted for by the balance with the
diffusion mechanisms of the triple correlations, the pressure-velocity redistribution and, of course,
the viscous dissipation rate. The conditionally averaged dissipation {¢) and shear stress — {u'w")
qualitatively follow the contours of 3{u'?) and §{w’2) and are therefore not shown here.

Figure 13 (a) shows the contours of the conditionally averaged spanwise contribution to the
kinetic energy {»’%). In this problem the large-scale structure is two dimensional, and spanwise
gradients of all conditionally averaged quantities vanish. There is therefore no direct production
of $(v"?) by the large-scale structure. There is, however, an indirect production via the approxi-
mated form of the pressure-velocity strain correlation which redistributes the energy from
$<u’?) and $<w'?) to $(v'?). The pressure—velocity strain correlation {$'0v’/dy) shown in figure
13(b), essentially accounts for the contours of ${v"2) of figure 13 (). This consideration illustrates
how three dimensional fine-grained turbulence is indirectly produced from a large-scale two
dimensional coherent structure.
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Ficure 13. The spanwise component of conditionally averaged turbulence kinetic energy and its ‘production’
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7. FURTHER DISCUSSIONS

The numerical work reported in this paper complements our previous work on similar problems
by means of approximate integral energy considerations (Liu & Merkine 19764; Alper & Liu
1978). In the present work the temporal interactions in the mean are considered and the mean
flow is homogeneous horizontally and its overall evolution is in time. In the real laboratory
problem the mean shear layer develops with the downstream distance. The former problem was
chosen for our numerical work because it bears a remarkable physical resemblance to the
spatially developing problem but lacks the conceptual numerical difficulties involved in specify-
ing the downstream conditions in the presence of coherent structures and turbulence. There is,
of course, no obvious direct one-to-one correspondence between the two problems, as was
discussed earlier (Alper & Liu 1978). In making inferences from the present temporal problem
to the spatial problem, the time here corresponds to the downstream distance and the wavenumber
here corresponds to the frequency in the spatial problem. The conditional average in the
latter is then linked to the phase of the imposed disturbance upstream and such (phase)
averages are fully realizable in the laboratory (Binder & Favre-Marinet 1973; Hussain &
Reynolds 1970; Kendall 1970; Favre-Martinet 1975). The Reynolds average, which is the
horizontal average in this work, would be the time average in the spatial problem.

Although the present work furnishes the local structural details of the problem, the overall
interaction process is still governed by the ‘global’ energy exchange processes. The mechanisms
for such global exchange processes, which were discussed in the approximate analysis (Liu &
Merkine 1976 a; Liu & Alper 1977; Alper & Liu 1978), are recovered here via Reynolds averaging
of certain of the details of the problem. The global energies £ and E; essentially govern the
amplitude of the large-scale coherent structure and the fine-grained turbulence. That Ej amplifies
and decays indicates that its interaction with the turbulence and the mean flow is a non-equilibrium
process and, as such, is dependent upon the initial conditions. It is the initial imbalance between
its production from the mean and its ‘ dissipation’ by the fine-grained turbulence that allows its
dramatic growth. In the latter half of its life cycle the reverse is true. The fine-grained turbulence
rises from an initial quasi-equilibrium level to a new one at the end of this non-equilibrium
interaction, because it extracts far more energy from the mean flow and from the large-scale
structure than it loses through viscous dissipation. The energy gained from the large-scale
structure is, of course, extracted indirectly from the mean flow. The direct production of tur-
bulence from the mean flow may also be enhanced by the local distortions of the mean flow
by the large-scale structure. In order to understand the role of large-scale structures in turbulent
shear flows, we have thus found that it is essential to consider the overall non-equilibrium energy
exchange processes. The present numerical results enable us to describe the qualitative principles
in the evolution of the problem. The relevant detailed structure of the problem, particularly,
say, at maximal large-scale structure intensities, must be placed in the perspective of the
developing events described by the global considerations.

It is of interest to discuss, in the light of the present numerical results, attempts at a nonlinear
critical layer analysis of the same problem making use of ideas similar to those of Benny &
Bergeron (1969), with an appropriately defined turbulent Reynolds number and augmented
by the stress equations for 7;;. The nonlinear critical layer analysis requires a neutral (or nearly
neutral) condition with the large-scale structure being small (though nonlinear). With respect
to the present numerical results, such an analysis would most probably suit a situation in the
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latter stages of the development (¢ X 5.0) when the amplitude is small and the conditions nearly
‘neutral.” The small amplitude requirement precludes placing the nonlinear critical layer at the
time ¢ ~ 1.5; and, although there the large-scale structure is ‘neutral’, it is not a steady situation.
The nonlinear critical layer theory also requires that the vorticity within the cats’ eye pattern be
uniform. The numerical results here show, however, that because of strong interactions with the
mean flow and turbulence, the large-scale structure vorticity is distributed rather unevenly
within the cats’ eye.

In areal, natural turbulent shear layer in the laboratory it is not inconceivable that a spectrum
of disturbances exists upstream of the free shear flow. This situation is made all the more likely
if the upstream boundary layers are turbulent. The free shear layer, which is inflexional in its
mean velocity profile, selects from the initial broad-band disturbances the mode (or narrow
band of modes) that is most efficient in extracting energy from the mean flow relative to the rate
of “dissipation’ by the eddies of much smaller scale. Because of the initial broad-band disturb-
ances, the subsequent observed large-scale structure development is dispersive about, rather than
concentrated upon, the initially most efficient mode. It is likely that, contained in the initial
broad-band disturbances, are disturbances whose frequencies are ‘subharmonic’ relative to the
most efficient mode. Given an opportune phase relation between the subharmonic and the
fundamental component, neighbouring eddies of the latter are likely to agglomerate to form a
single larger-scale disturbance.? This subharmonic formation, which is familiar in transitional
laminar free shear layers (Freymuth 1966; Browand 1966; Kelly 1967; Miksad 1972, 1973) is
found to occur also in turbulent shear layers at relatively low Reynolds number (Winant &
Browand 1974; Browand & Weidman 1976) as well as at high Reynolds numbers (Roshko
1976), including the tripling of large-scale structures. In turbulent shear layers with high
Reynolds number, where the large-scale structures are superposed upon fine-grained turbulence,
it is reported (Dimotakis & Brown 1976) that the production of more energetic fine-grained
turbulence, not the agglomeration process, appears to be the dominant mechanism in bringing
about the eventual disappearance of the large-scale structures. The observational problem is
still a difficult one because of the natural, uncontrolled initial disturbances upstream.

From theoretical considerations the initial conditions on the interactions between the large-scale
structure and fine-grained turbulence and the entire development of the shear layers enter into
the problem in the form of (1) the relative initial energy levels of the large-scale coherent structure
and the fine-grained turbulence, and (2) the initial mode of the large-scale structure charac-
terized by the dimensionless wavenumber for the temporal problem and the dimensionless
frequency for the spatial problem, both scaled by the initial shear layer thickness. The effects of
parametric variations of initial conditions have received thorough discussion in previous theo-
retical studies (Liu 1971, 1974; Liu & Merkine 19764; Liu & Alper 1977; Alper & Liu 1978). It
is increasingly evident from observations that initial conditions do indeed also play an important
role in the subsequent development of turbulent shear flows with high Reynolds number
(Bradshaw 1966; Binder & Favre-Marinet 1973; Batt 1975; Favre-Marinet 1975; Laufer 1975;
Dimotakis & Brown 1¢76; Roshko 1976; Moore 1977; Oster ¢f al. 1977). In this case it is well
worth repeating the suggestion, made by Liepmann (1964) some time ago, that in the experi-
mental study of large-scale structures in free turbulent shear flows, well controlled disturbances be
imposed in the same spirit as that of Schubauer & Skramstad’s (1948) study of Tollmein—

+ A study of this agglomeration process and its effect on the generation of turbulence, with the use of the present
computational framework, is in progress.
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Schlichting—Dryden waves in laminar flows. ‘ Well controlled’ is here interpreted as the quanti-
tative specification of the initial conditions in terms of initial energy levels, large-scale structure
modes and the mean properties of the initial shear layer. Conditional sampling techniques are
by no means unique and not all are necessarily susceptible to physical interpretation via con-
servation principles. However, the conditional averages discussed here in terms of phase averages
have the advantage in connection with well-controlled disturbances that they yield results that
can be interpreted through the conservation equations.

We have shown (in figure 13) how three dimensional fine-grained turbulence can be produced
indirectly from the two dimensional large-scale structure via the isotropizing process of the
approximated pressure—strain correlation. Spanwise periodicity in the large-scale structure has
been recently observed by Konrad (1976). There is then the additional possibility that three
dimensional fine-grained turbulence can also be produced directly from the spanwise periodicity.
The role of such ‘three-dimensional’ large-scale coherent structures in the production of
turbulence warrants further studies.

Some aspects of this work were first reported at the Symposium on Turbulent Shear Flows,
The Pennsylvania State University, 18-20 April 1977 (Liu & Alper 1977), at the Symposium
on Turbulence, Technical University, W. Berlin, 1-5 August 1977 (Liu et al. 1977) and at the
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